
J. Gonzalo et al. (Eds.): ECDL 2006, LNCS 4172, pp. 87 – 98, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Enhanced Search Interface for Information
Discovery from Digital Libraries

Georgia Koutrika1,* and Alkis Simitsis2,**

1 University of Athens,
Department of Computer Science,

Athens, Greece
koutrika@di.uoa.gr

2 National Technical University of Athens,
Department of Electrical and Computer Engineering,

Athens, Greece
asimi@dbnet.ece.ntua.gr

Abstract. Libraries, museums, and other organizations make their electronic
contents available to a growing number of users on the Web. A large fraction of
the information published is stored in structured or semi-structured form.
However, most users have no specific knowledge of schemas or structured
query languages for accessing information stored in (relational or XML)
databases. Under these circumstances, the need for facilitating access to
information stored in databases becomes increasingly more important. Précis
queries are free-form queries that instead of simply locating and connecting
values in tables, they also consider information around these values that may be
related to them. Therefore, the answer to a précis query might also contain
information found in other parts of the database. In this paper, we describe a
précis query answering prototype system that generates personalized presenta-
tion of short factual information précis in response to keyword queries.

1 Introduction

Emergence of the World Wide Web has given the opportunity to libraries, museums,
and other organizations to make their electronic contents available to a growing
number of users on the Web. A large fraction of that information is stored in
structured or semi-structured form. However, most users have no specific knowledge
of schemas or (semi-)structured query languages for accessing information stored in
(relational or XML) databases. Under these circumstances, the need for facilitating
access to information stored in databases becomes increasingly more important.

Towards that direction, existing efforts have mainly focused on facilitating
querying over structured data proposing either handling natural language queries [2,
14, 17] or free-form queries [1, 18]. However, end users want to achieve their goals

** This work is partially supported by the Information Society Technologies (IST) Program of

the European Commission as part of the DELOS Network of Excellence on Digital Libraries
(Contract G038-507618).

** This work is co-funded by the European Social Fund (75%) and National Resources (25%) -
Operational Program for Educational and Vocational Training II (EPEAEK II) and
particularly the Program PYTHAGORAS.

88 G. Koutrika and A. Simitsis

with a minimum of cognitive load and a maximum of enjoyment [12]. In addition,
they often have very vague information needs or know a few buzzwords. Therefore,
the usefulness of keyword-based queries, especially compared to a natural language
approach in the presence of complex queries, has been acknowledged [26].

Consider a digital collection of art works made available to people on the Web. A
user browses the contents of this collection with the purpose of learning about
“Michelangelo”. If this need is expressed as a free-form query, then existing keyword
searching approaches focus on finding and possibly interconnecting entities that
contain the query terms, thus they would return an answer as brief as “Michelangelo:
painter, sculptor”. This answer conveys little information to the user and more
importantly does not help or encourage him in searching or learning more about
“Michelangelo”. On the other hand, a more complete answer containing, for instance,
biographical data and information about this painter’s work would be more
meaningful and useful instead. This could be in the form of the following précis:

“Michelangelo (March 6, 1475 - February 18, 1564) was born in Caprese,
Tuscany, Italy. As a painter, Michelangelo's work includes Holy Family of the
Tribune (1506), The Last Judgment (1541), The Martyrdom of St. Peter (1550).
As a sculptor Michelangelo's work includes Pieta (1500), David (1504).”

A précis is often what one expects in order to satisfy an information need
expressed as a question or as a starting point towards that direction. Based on the
above, support of free-form queries over databases and generation of answers in the
form of a précis comprises an advanced searching paradigm helping users to gain
insight into the contents of a database. A précis may be incomplete in many ways; for
example, the abovementioned précis of “Michelangelo” includes a non-exhaustive list
of his works. Nevertheless, it provides sufficient information to help someone learn
about Michelangelo and identify new keywords for further searching. For example,
the user may decide to explicitly issue a new query about “David” or implicitly by
following underlined topics (hyperlinks) to pages containing relevant information.

In the spirit of the above, recently, précis queries have been proposed [11]. These
are free-form queries that instead of simply locating and connecting values in tables,
they also consider information around these values that may be related to them.
Therefore, the answer to a précis query might also contain information found in other
parts of the database, e.g., frescos created by Michelangelo. This information needs to
be “assembled” -in perhaps unforeseen ways- by joining tuples from multiple
relations. Consequently, the answer to a précis query is a whole new database, a
logical database subset, derived from the original database compared to flattened out
results returned by other approaches. This subset is useful in many cases and provides
to the user much greater insight into the original data.

The work that we describe in this paper focuses on design and implementation
issues of a précis query answering prototype with the following characteristics:

− Support of a keyword-based search interface for accessing the contents of the
underlying collection.

− Generation of a logical subset of the database that answers the query, which
contains not only items directly related to the query selections but also items
implicitly related to them in various ways.

 An Enhanced Search Interface for Information Discovery from Digital Libraries 89

− Personalization of the logical subset generated and hence the précis returned
according to the needs and preferences of the user as a member of a group of users.

− Translation of the structured output of a précis query into a synthesis of results.
The output is an English presentation of short factual information précis.

Outline. Section 2 discusses related work. Section 3 describes the general framework
of précis queries. Section 4 presents the design and implementation of our prototype
system, and Section 5 concludes our results with a prospect to the future.

2 Related Work

The need for free-form queries has been early recognized in the context of databases
[18]. With the advent of the World Wide Web, the idea has been revisited. Several
research efforts have emerged for keyword searching over relational [1, 3, 8, 13] and
XML data [5, 6, 9]. Oracle 9i Text [19], Microsoft SQL Server [16] and IBM DB2
Text Information Extender [10] create full text indexes on text attributes of relations
and then perform keyword queries.

Existing keyword searching approaches focus on finding and possibly
interconnecting tuples in relations that contain the query terms. For example, the
answer for “Michelangelo” would be in the form of relation-attribute pair, such as
(Artist, Name). In many practical scenarios, this answer conveys little information
about “Michelangelo”. A more complete answer containing, for instance, information
about this artist's works would be more useful. In the spirit of the above, recently,
précis queries have been proposed [11]. The answer to a précis query is a whole new
database, a logical database subset, derived from the original database. Logical
database subsets are useful in many cases. However, naïve users would rather prefer a
friendly representation of the information contained in a logical subset, without
necessarily understanding its relational character. In earlier work [11], the importance
of such representation constructed based on information conveyed by the database
graph, has been suggested. A method for generating an English presentation of the
information contained in a logical subset as a synthesis of simple SPO sentences has
been proposed [21]. The process resembles those involved in handling natural
language queries over relational databases in that they both involve some amount of
additional predefinitions for the meanings represented by relations, attributes and
primary-to-foreign key joins. However, natural language query processing is more
complex, since it has to handle ambiguities in natural language syntax and semantics
whereas this approach uses well defined templates to rephrase relations and tuples.

The problem of facilitating the naïve user has been thoroughly discussed in the
field of natural language processing (NLP). For the last couple of decades, several
works are presented concerning NL Querying [26, 15], NL and Schema Design [23,
14, 4], NL and DB interfaces [17, 2], and Question Answering [25, 22]. Related
literature on NL and databases, has focused on totally different issues such as the
interpretation of users’ phrasal questions to a database language, e.g., SQL, or to the
automatic database design, e.g., with the usage of ontologies [24]. There exist some
recent efforts that use phrasal patterns or question templates to facilitate the
answering procedure [17, 22]. Moreover, these works produce pre-specified answers,

90 G. Koutrika and A. Simitsis

where only the values in the patterns change. This is in contrast to précis queries,
which construct logical subsets on demand and use templates and constructs of
sentences defined on the constructs of the database graph, thus generating dynamic
answers. This characteristic of précis queries also enables template multi-utilization.

In this paper, we built upon the ideas of [11, 20, 21] and we describe the design
and implementation of a system that supports précis queries for different user groups.

3 The Précis Query Framework

The purpose of this section is to provide background information on précis queries.

Preliminaries. We consider the database schema graph G(V, E) as a directed graph
corresponding to a database schema D. There are two types of nodes in V: (a) relation
nodes, R, one for each relation in the schema; and (b) attribute nodes, A, one for each
attribute of each relation in the schema. Likewise, edges in E are the following: (a)
projection edges, Π, each one connects an attribute node with its container relation
node, representing the possible projection of the attribute in the system’s answer; and
(b) join edges, J, from a relation node to another relation node, representing a
potential join between these relations. These could be joins that arise naturally due to
foreign key constraints, but could also be other joins that are meaningful to a domain
expert. Joins are directed for reasons explained later. Therefore, a database graph is a
directed graph G(V, E), where: V = R∪A, and E = Π∪J.

A weight, w, is assigned to each edge of the graph G. This is a real number in the
range [0, 1], and represents the significance of the bond between the corresponding
nodes. Weight equal to 1 expresses strong relationship; in other words, if one node of
the edge appears in an answer, then the edge should be taken into account making the
other node appear as well. If a weight equals to 0, occurrence of one node of the edge
in an answer does not imply occurrence of the other node. Based on the above, two
relation nodes could be connected through two different join edges, in the two
possible directions, between the same pair of attributes, but carrying different
weights. For simplicity, we assume that there is at most one directed edge from one
node to the same destination node.

A directed path between two relation nodes, comprising adjacent join edges,
represents the “implicit” join between these relations. Similarly, a directed path
between a relation node and an attribute node, comprising a set of adjacent join edges
and a projection edge represents the “implicit” projection of the attribute on this
relation. The weight of a path is a function of the weights of constituent edges, which
should satisfy the condition that the estimated weight should decrease as the length of
the path increases, based on human intuition and cognitive evidence. In our system,
we have considered the product of weights over a path.

Logical Database Subsets. Consider a database D properly annotated with a set of
weights and a précis query Q, which is a set of tokens, i.e. Q={k1,k2,…,km}. We
define as initial relation any database relation that contains at least one tuple in which
one or more query tokens have been found. A tuple containing at least one query
token is called initial tuple.

 An Enhanced Search Interface for Information Discovery from Digital Libraries 91

ARTIST(wid,name,birth_date,
 death_date,birth_location)

CONTENT (wid,eid,notes)

EXHIBITION(eid,mid,title,
 duration,organizer)

MUSEUM(mid,name,url,location)

OWNER (wid,mid,acquisition)

WORK(wid,title,creation_date,
 picture)

Fig. 1. An example database graph

A logical database subset D’ of D satisfies the following:
− The set of relation names in D’ is a subset of that in the original database D.
− For each relation Ri’ in the result D’, its set of attributes in D’ is a subset of its set

of attributes in D.
− For each relation Ri’ in the result D’, the set of its tuples is a subset of the set of

tuples in the original relation Ri in D (when projected on the set of attributes that
are present in the result).
The result of applying query Q on a database D given a set of constraints C is a

logical database subset D’ of D, such that D’ contains initial tuples for Q and any other
tuple in D that can be transitively reached by joins on D starting from some initial
tuple, subject to the constraints C [11]. Possible constraints could be the maximum
number of attributes in D′, the minimum weight of paths in D′, the maximum number
of tuples in D′ and so forth. Using different constraints and weights on the edges of
the database graph allows generating different answers for the same query.

Précis Patterns. Weights and constraints may be provided in different ways. They
may be set by the user at query time using an appropriate user interface. This option is
attractive in many cases since it enables interactive exploration of the contents of a
database. This bears a resemblance to query refinement in keyword searches. In case
of précis queries, the user may explore different regions of the database starting, for
example, from those containing objects closely related to the topic of a query and
progressively expanding to parts of the database containing objects more loosely
related to it. Although this approach is quite elegant, the user should spend some time
on a procedure that may not always seem relevant to his need for a certain answer.
Thus, weights and criteria may be pre-specified by a designer, or stored as part of a
profile corresponding to a user or a group of users. In particular, in our framework,
we have adopted the use of patterns of logical subsets corresponding to different
queries or groups of users, which are stored in the system [20]. For instance, different
patterns would be used to capture preferences of art reviewers and art fans.

92 G. Koutrika and A. Simitsis

P1

P2

Fig. 2. Example précis patterns

Formally, given the database schema graph G of a database D, a précis pattern is a
directed rooted tree P(V,E) on top of G annotated with a set of weights. Given a query
Q over database D, a précis pattern P(V,E) is applicable to Q, if its root relation
coincides with an initial relation for Q. The result of applying query Q on a database D
given an applicable pattern P is a logical database subset D’ of D, such that:
− The set of relation names in D’ is a subset of that in P.
− For each relation Ri’ in the result D’, its set of attributes in D’ is a subset of its set

of attributes in P.
− For each relation Ri’ in the result D’, the set of its tuples is a subset of the set of

tuples in the original relation Ri in D (when projected on the set of attributes that
are present in the result).
In order to produce the logical database subset D’, a précis pattern P is enriched

with tuples extracted from the database based on constraints, such as the maximum
number of attributes in D′, the maximum number of tuples in D′ and so on.

Example. Consider the database graph presented in Fig. 1. Observe the two directed
edges between WORK and OWNER. Works and owners are related but one may consider
that owners are more dependent on works than the other way around. In other words,
an answer regarding an owner should always contain information about related works,
while an answer regarding a work may not necessarily contain information about its
owner. For this reason, the weight of the edge from OWNER to WORK is set to 1, while
the weight of the edge from WORK to OWNER is 0.7. Précis patterns corresponding to
different queries and/or groups of users may be stored in the system. In Fig. 2,
patterns P1 and P2 correspond to different queries, regarding artists and exhibitions,
respectively (the initial relation in each pattern is shown in grey).

4 System Architecture

In this section, we describe the architecture of a prototype précis query answering
system, depicted in Fig. 3.

 An Enhanced Search Interface for Information Discovery from Digital Libraries 93

Fig. 3. System Architecture

Each time a user poses a question, the system finds the initial relations that match
this query, i.e. database relations containing at least one tuple in which one or more
query tokens have been found (Keyword Locator). Then, it determines the database
part that contains information related to the query; for this purpose, it searches in a
repository of précis patterns to extract an appropriate one (Précis Manager). If an
appropriate pattern is not found, then a new one is created and registered in the
repository. Next, this précis pattern is enriched with tuples extracted from the
database according to the query keywords, in order to produce the logical database
subset (Logical Subset Generator). Finally, an answer in the form of a précis is
returned to the user (Translator). The creation and maintenance of the inverted index,
patterns and templates is controlled through a Designer component. In what follows,
we discuss in detail the design and implementation of these components.

Designer Interface. This module provides the necessary functionality that allows a
designer to create and maintain the knowledge required for the system to operate, i.e.:

− inverted index: with a click of a button, the designer may create or drop the
inverted index for a relational database.

− templates: through a graphical representation of a database schema graph, the
designer may define templates to be used by the Translator.

− user groups: the designer may create pre-specified groups of users. Then, when a
new user registers in the system, he may choose the group he belongs to.

− patterns: through a graphical representation of a database schema graph, the
designer may define précis patterns targeting different groups of users and different
types of queries for a specific domain. These are stored in a repository.

Manual creation of patterns and user groups assumes good domain and application
knowledge and understanding. For instance, the pattern corresponding to a query
about art works would probably contain the title and creation date of art works along
with the names of the artists that created them and museums that own them; whereas
the pattern corresponding to a query about artists would most likely contain detailed
information about artists such as name, date and location of birth, and date of death
along with titles of works an artist has created. Furthermore, different users or groups
of users, e.g., art reviewers vs. art fans, would be interested in different logical subsets
for the same query. We envision that the system could learn and adapt précis patterns

94 G. Koutrika and A. Simitsis

for different users or groups of users by using logs of past queries or by means of
social tagging by large numbers of users. Then, the only work a designer would have
to do would be the creation of templates.

Keyword Locator. When a user submits a précis query Q={k1,k2,…,km}, the system
finds the initial relations that match this query, i.e. database relations containing at
least one tuple in which one or more query tokens have been found. For this purpose,
an inverted index has been built, which associates each keyword that appears in the
database with a list of occurrences of the keyword. Modern RDBMS’ provide
facilities for constructing full text indices on single attributes of relations (e.g.,
Oracle9i Text). In our approach, we chose to create our own inverted index, basically
due to the following reasons: (a) a keyword may be found in more than one tuple and
attribute of a single relation and in more than one relation; and (b) we consider
keywords of other data types as well, such as date and number.

At its current version, the system considers that query keywords are connected with
the logical operator or. Keywords enclosed in quotation marks, e.g., “Leonardo da
Vinci”, are considered as one keyword that must be found in the same tuple. This means
that the user can issue queries such as “Michelangelo” or “Leonardo da Vinci”, but not
queries such as “Michelangelo” and “Leonardo da Vinci”, which would essentially ask
about the connection between these two entities/people. We are currently working on
supporting more complex queries involving operators and and not.

Based on the above, given a user query, Keyword Locator consults the inverted
index, and returns for each term ki in Q, a list of all initial relations, i.e. ki→ {Rj},
∀ki in Q. (If no tuples contain the query tokens, then an empty answer is returned.)

Précis Manager. Précis Manager determines the schema of the logical database
subset, i.e. the database part that contains information related to the query. This
should involve initial relations and relations around them containing relevant
information. The schema of the subset that should be extracted from a database given
a précis query may vary depending on the type of the query issued and the user
issuing the query. Patterns of logical subsets corresponding to different queries or
groups of users are stored in the system. For instance, different patterns would be
used to capture preferences of art reviewers and fans.

Each time an individual poses a question, Précis Manager searches into the
repository of précis patterns to extract those that are appropriate for the situation. If
users are categorized into groups, then this module examines only patterns assigned to
the group the active user belongs to. Based on the initial relations identified for query
Q, one or more applicable patterns may be identified. Recall that a précis pattern
P(V,E) is applicable to Q, if its root relation coincides with an initial relation for Q.
For instance, given a query on “David”, a pattern may correspond to artists
(“Michelangelo”) and another to owners (“Accademia di Belle Arti, Florence, Italy”).

If none is returned for a certain initial relation, then the request is propagated to a
Schema Generator. This module is responsible for finding which part of the database
schema may contain information related to Q. The output of this step is the schema D′
of a logical database subset comprised of: (a) relations that contain the tokens of Q;
(b) relations transitively joining to the former, and (c) a subset of their attributes that
should be present in the result, according to the preferences registered for the user that
poses the query. (For more details, we refer the interested reader to [20].) After its

 An Enhanced Search Interface for Information Discovery from Digital Libraries 95

creation, the schema of the logical database subset is stored in the graph database as a
pattern associated with the group that the user submitting the query belongs to.

Logical Subset Generator. A précis pattern selected from the previous step is
enriched with tuples extracted from the database according to the query keywords, in
order to produce the logical database subset. For this purpose, the Logical Subset
Generator starts from the initial relations where tokens in Q appear. Then, more tuples
from other relations are retrieved by (foreign-key) join queries starting from the initial
relations and transitively expanding on the database schema graph following edges of
the pattern. Joins on a précis pattern are executed in order of decreasing weight. In
other words, a précis pattern comprises a kind of a “plan” for collecting tuples
matching the query and others related to them. At the end of this phase, the logical
database subset has been produced.

Translator. The Translator is responsible for rendering a logical database subset to a
more user-friendly synthesis of results. This is performed by a semi-automatic method
that uses templates over the database schema. In the context of this work, the
presentation of a query answer is defined as a proper structured management of
individual results, according to certain rules and templates predefined by a designer.
The result is a user-friendly response through the composition of simple clauses.

In this framework, in order to describe the semantics of a relation R along with its
attributes in natural language, we consider that relation R has a conceptual meaning
captured by its name, and a physical meaning represented by the value of at least one
of its attributes that characterizes tuples of this relation. We name this attribute the
heading attribute and we depict it as a hachured rounded rectangle. For example, in
Fig. 1, the relation ARTIST conceptually represents “artists” in real world; indeed, its
name, ARTIST, captures its conceptual meaning. Moreover, the main characteristic of
an “artist” is its name, thus, the relation ARTIST should have the NAME as its heading
attribute. By definition, the edge that connects a heading attribute with the respective
relation has a weight 1 and it is always present in the result of a précis query. A
domain expert makes the selection of heading attributes.

The synthesis of query results follows the database schema and the correlation of
relations through primary and foreign keys. Additionally, it is enriched by
alphanumeric expressions called template labels mapped to the database graph edges.

A template label, label(u,z) is assigned to each edge e(u,z)∈ E of the
database schema graph G(V,E). This label is used for the interpretation of the
relationship between the values of nodes u and z in natural language.

Each projection edge e ∈ Π that connects an attribute node with its container
relation node, has a label that signifies the relationship between this attribute and the
heading attribute of the respective relation; e.g., the BIRTH_DATE of an ARTIST
(.NAME). If a projection edge is between a relation node and its heading attribute, then
the respective label reflects the relationship of this attribute with the conceptual
meaning of the relation; e.g., the NAME of an ARTIST. Each join edge e ∈ J between
two relations has a label that signifies the relationship between the heading attributes
of the relations involved; e.g., the WORK (.TITLE) of an ARTIST (.NAME). The label

96 G. Koutrika and A. Simitsis

of a join edge that involves a relation without a heading attribute signifies the
relationship between the previous and subsequent relations.

We define as the label l of a node n the name of the node and we denote it as
l(n). For example, the label of the attribute node NAME is “name”. The name of a
node is determined by the designer/administrator of the database. The template label
label(u,z) of an edge e(u,z) formally comprises the following parts: (a) lid, a
unique identifier for the label in the database graph; (b) l(u), the name of the starting
node; (c) l(z), the name of the ending node; (d) expr1, expr2, expr3 alphanumeric
expressions. A simple template label has the form:

label(u,z) = expr1 + l(u) + expr2 + l(z) + expr3

where the operator “+” acts as a concatenation operator.
In order to use template labels or to register new ones, we use a simple language

for templates that supports variables, loops, functions, and macros.
The translation is realized separately for every occurrence of a token. At the end,

the précis query lists all the clauses produced. For each occurrence of a token, the
analysis of the query result graph starts from the relation that contains the input token.
The labels of the projection edges that participate in the query result graph are
evaluated first. The label of the heading attribute comprises the first part of the
sentence. After having constructed the clause for the relation that contains the input
token, we compose additional clauses that combine information from more than one
relation by using foreign key relationships. Each of these clauses has as subject the
heading attribute of the relation that has the primary key. The procedure ends when
the traversal of the databases graph is complete. For further details, we refer the
interested reader to [21].

User Interface. The user interface of our prototype comprises a simple form where
the user can enter one or more keywords describing the topic of interest. Currently,
the system considers that query keywords are connected with the logical operator or.
This means that the user can ask about “Michelangelo” or “Leonardo da Vinci”, but
cannot submit a query about “Michelangelo” and Leonardo da Vinci”, which
essentially would ask about the connection between these two entities/people.

Before using the system, a user identifies oneself as belonging to one of the
existing groups, i.e. art reviewers or fans. Fig. 4 displays an example of a user query
and the answer returned by the system. Underlined topics are hyperlinks. Clicking
such a hyperlink, the user implicitly submits a new query regarding the underlined
topic. For example, clicking on “David” will generate a new précis regarding this
sculpture. Hyperlinks are defined on heading attributes of relations.

Although extensive testing of the system with a large number of users has not
taken place yet, a small number of people have used the system to search for pre-
selected topics as well as topics of their interest and reported their experience. This
has indicated the following:

− The précis query answering paradigm allows users with little or no knowledge of
the application domain schema, to quickly and easily gain an understanding of the
information space.

− Naïve users find précis answers to be user-friendly and feel encouraged to use the
system more.

 An Enhanced Search Interface for Information Discovery from Digital Libraries 97

Fig. 4. Example précis query

− By providing précis of information as answers and hyperlinks inside these answers,
the system encourages users to get involved in a continuous search-and-learn
process.

5 Conclusions and Future Work

We have described the design, prototyping and evaluation of a précis query answering
system with the following characteristics: (a) support of a keyword-based search
interface for accessing the contents of the underlying collection, (b) generation of a
logical subset of the database that answers the query, which contains not only items
directly related to the query selections but also items implicitly related to them in
various ways, (c) personalization of the logical subset generated and hence the précis
returned according to the needs and preferences of the user as a member of a group of
users, and (d) translation of the structured output of a précis query into a synthesis of
results. The output is an English presentation of short factual information précis. As
far as future work is concerned, we are interested in implementing a module for
learning précis patterns based on logs of queries that domain users have issued in the
past. In a similar line of research, we would like to allow users to provide feedback
regarding the answers they receive. Then, user feedback will be used to modify précis
patterns. Another challenge will be the extension of the translator to cover answers to
more complex queries. Finally, we are working towards the further optimization of
various modules of the system.

References

1. S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-based search
over relational databases. In ICDE, pp. 5-16, 2002.

2. I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. Natural Language Interfaces to
Databases - An Introduction. NL Eng., 1(1), pp. 29-81, 1995.

3. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching
and browsing in databases using BANKS. In ICDE, pp. 431-440, 2002.

4. A. Dusterhoft, and B. Thalheim. Linguistic based search facilities in snowflake-like
database schemes. DKE, 48, pp. 177-198, 2004.

98 G. Koutrika and A. Simitsis

5. D. Florescu, D. Kossmann, and I. Manolescu. Integrating keyword search into XML query
processing. Computer Networks, 33(1-6), 2000.

6. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRank: Ranked keyword search
over XML documents. In SIGMOD, pp. 16-27, 2003.

7. L. R. Harris. User-Oriented Data Base Query with the ROBOT Natural Language Query
System. VLDB 1977: 303-312.

8. V. Hristidis, L. Gravano, and Y. Papakonstantinou. Effcient IR-style keyword search over
relational databases. In VLDB, pp. 850-861, 2003.

9. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on XML
graphs. In ICDE, pp. 367-378, 2003.

10. IBM. DB2 Text Information Extender. url: www.ibm.com/software/data/db2/extender/
textinformation/.

11. G. Koutrika, A. Simitsis, and Y. Ioannidis. Précis: The essence of a query answer. In
ICDE, 2006.

12. G. Marchionini. Interfaces for End-User Information Seeking. J. of the American Society
for Inf. Sci., 43(2), 156-163, 1992.

13. U. Masermann, and G. Vossen. Design and implementation of a novel approach to
keyword searching in relational databases. In ADBIS-DASFAA, pp. 171-184, 2000.

14. E. Metais, J. Meunier, and G. Levreau. Database Schema Design: A Perspective from
Natural Language Techniques to Validation and View Integration. In ER, pp. 190-205,
2003.

15. E. Metais. Enhancing information systems management with natural language processing
techniques. DKE, 41, pp. 247-272, 2002.

16. Microsoft. SQL Server 2000. url: http://msdn.microsoft.com/library/.
17. M. Minock. A Phrasal Approach to Natural Language Interfaces over Databases. In NLDB,

pp. 181-191, 2005.
18. A. Motro. Constructing queries from tokens. In SIGMOD, pp. 120-131, 1986.
19. Oracle. Oracle 9i Text. url: www.oracle.com/technology/products/text/.
20. A. Simitsis, and G. Koutrika. Pattern-Based Query Answering. In PaRMa, 2006.
21. A. Simitsis, and G. Koutrika. Comprehensible Answers to Précis Queries. In CAiSE, pp.

142-156, 2006.
22. E. Sneiders. Automated Question Answering Using Question Templates That Cover the

Conceptual Model of the Database. In NLDB, pp. 235-239, 2002.
23. V.C. Storey, R.C. Goldstein, H. Ullrich. Naive Semantics to Support Automated Database

Design. IEEE TKDE, 14(1), pp. 1-12, 2002.
24. V.C. Storey. Understanding and Representing Relationship Semantics in Database Design.

In NLDB, pp. 79-90, 2001.
25. A. Toral, E. Noguera, F. Llopis, and R. Munoz. Improving Question Answering Using

Named Entity Recognition. In NLDB, pp. 181-191, 2005.
26. Q. Wang, C. Nass, and J. Hu. Natural Language Query vs. Keyword Search: Effects of

Task Complexity on Search Performance, Participant Perceptions, and Preferences. In
INTERACT, pp. 106-116, 2005.

	Introduction
	Related Work
	The Précis Query Framework
	System Architecture
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

